
AD— AQIsO SN? COLOftADO STAYF UNIV r~fl CØ4..LINS Dcn or MATIE MATICS F/s 12/1
ADAPTIVE PIECEWISE POLYNQIJAL UNIFORM APPROXIMATIOtI.(u)
MAR 7? J A ~RL1. AF—AFO SR—25—Y e—Thp UNCLASSIFieD

_

~~~

_s . 

AFOSR-TR-77-O6*3 1t

_ _I _ _9!I!t ’

I! ___

_ -- _ _  - - -a



I .C 2 8

~~~~~~ IIIl~
I . I

• _ _

• 
I .25 

~~ Iffl~
6

V



-~~~~~~

AFOSR TR - 77 064 3 ~~~~~~~~~~~~~~~~~~~~~~~~~~

t~
.

ADAPTIVE PIECEWISE POLYNOMIAL
UNIFORM APPROXIMATION4

by

Joseph A. HullA

© Department of Mathematics
Colorado State University

Fort Collins, Colorado 80523

Approved for public release;
di~tpjbution unlimited.

1

D D C

I H~tUN a
6~~L5UUL~A-

1 3

J 

1Research sponsored by the Air Force Office of Scientific Research, Air• ___ Force System s Coumsand, USAF, under Grant No. AFOSR-76-2878.

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - -. 

~~~~~~~~~~~~~~~~~



— .- — —~~~~~~~~~~~

V

p

(

AIR FORCE OFFIC’~ 01 
SCIENTIFIC RESEARCH (USC )

NOTIC E OF TRANSMI TTAL TO DDC
This technical report has been reviewed end is
approved for publio release lAW APR 190—12 (7b).
Distribution is u~1i~tt•d.
A. D. BLOSE
Technical Informet ion Off iO•f

— ~~~~~~~~~~~ ~~~~~~~~



~~~~~- f d

: -

- ~~ £P~CiAL

CHAPTER I

Introduct ion

In this paper we shall develop two algorithms for curve fitting

which will be adaptive in nature using results from uniform approxi-

mation theory. The organization of this paper is as follows: in this

section we shall review some basic results from uniform appzoximation

theory , uniform approximation theory with side conditions, and the

Remes algorithm; in the second section we shall give our curve fitting

algorithms; and in the last section we shall report on our numerical

testing of our algorithms.

Let X be a compact topological space. Let C(X) denote the family

of all real-valued continuous functions defined on X. As is well

known , C(X) is a complete normed linear space under the supremum

(Chebyshev, uniform , max, infinity) norm

Ilfil maxlf(x)l, f C C(X).
xiX

Let S be a subset of C(X) and f€ C(X) be fixed. Consider

- inf h f - p u  r d
piS

If there is a p* € S such that IIp* - II d , then ~~ is called a best

approximation to f from S. For a given subset S, the following ques-

tions may be posed.

1. Does a best approximation exist for a particular fE C(X)?

• For each f £ CCX)?

1
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t 2. If a best approximation does exist , is it unique?

3. If a best approximation exists, is there an efficient way of

computing it?

~~. Does a best approximation depend continuously on the function

being approxi~sated? (That is, will small errors inevitably

introduced when calculating best approximations prevent an

algorithm from succeeding in converging to something close to

a best approximation? )

In order to answer these questions, we restrict our attention to

the following X and S. Let X be a compact subset of an interval on the

real line, and S be a (finite dimensional) Haar subspace of C(X). That

is, if S has dimension n, then the only function in S having n or more

zeros is the zero function.

For this particular X and S. all of the above questions have been

answered in the affirmative. For theorems and proofs regarding ques-

tions 1, 2 and £~, see for example [3]. We now address ourselves

specifically to question 3. The following theorem characterizing best

uniform approximations will prove useful.

CHARACTERIZATION THEOREM (3, p. 75). If S has dimension n, then

p* ( S is a best approximation to f E C(X) ‘~~ S if and only if there are

n + 1 points, x
~
, ..., in X C  [a, b] with x1 < x~~1

, (i 1,..., n)

such that f (x1) — P(Xj) r (_l)
iA and l x i h f  —

Given any f £ C(X) ~ S, then any set of n + 1. distinct points from

X determines uniquely a p £ S and a A C R so that p(x1) + (-l)’A

f(x~) since S is a Hear subspace (see (3]). The characterization

_ _ _  _ _ __ _ _ _ _ _ _ _
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theorem and the above observation allow us to view the problem of

finding the best approximation to f C C(X) as finding a set (called an

extreme or alternating set) of n + 1 points , (x 1, . . . ,  x
+1
}C X where

x. < x .
1
, i 1, ..., n so that the p and the A determined by the

extreme set have the property that lx i  = h f - pjj . In this case, p

must be the best approximation to f from S.

We no~ describe Remes second (or multiple exchange) algorithm

which calculates the best approximation to f € C ( X )  “ S by finding an

extreme set for f. We assume that f is fixed and that an arbitrary

reference set R {x 1, ..., x +1
} of n + 1 distinct points from X has

been chosen so that x. < x~91
, i 1, . . . ,  n, with the added assumption

that the A determined by this reference set is not zero. Since f ~ S,

and S has only dimension n, such a set may always be readily found .

We begin each iteration by computing the p and A associated with

the reference set R. Let a(x) = f(x) - p(x). Since a(x
~
) = (-l)1A

with A ~ 0, a(x) changes sign from one extreme point to the next. If

(x1, X
i+i
] C X, then since f and p are both continuous a has a zero

in [Xii  ~~~~~ call it zi. If [X ji x .÷1] ~ X, let z~rmin{xE. X: x >

and ci(x1 ) •a(x )  < o}. Set z0 min{x £ x}, z~~1 max{< € XL (It is

possible that z~ = ~~~~ although this will present no difficulty as

will become clear later).

Now we construct a new reference set Y {y 1, . . . ,  
~~~~ 

CX  of

distinct points so that the function a(x ) stil l alternates in sign,

that is a(y
i
).a(y i+~

) < 0 for ~ = 1, . . .,  n, la (v 1)J ~. Ia(xj)I for
1, . . .,  n + 1, and for some k, k 1, . . . ,  n + 1 IG(yk)I: hI t— p hi

We first find a trial reference set = 
~~
“‘ 

~n+l~ 
by choosing 

~~
to be a point in [z1_ 1, zi] fl X where a (x) (sign(c,(x~))) attains its

L 
~~~~~~~~~~ ~~~~~~~~~ --~~~~~~---~~~~~~—~~~~~~~~~ 

-



—-

14

maximum on [z. 1, z~
)fl X. If there is a k such that h o (

~k ) I  = ~f - phi .
then we set Y = ~~ . Otherwise, let y” be a point in X so that f

hI~ - ~Il . We form Y be adding y~% to and removing one of the ~~ ‘s so

that Y is still ordered and a(x) alternates in sign on Y. This may be .- - •

accomplished as follows. If y* £ 
~~k ’ ~k+1~ 

fl X, choose j to be either

k or k+1 so that a(~~
) is of the same sign as a(y*). Then replace

by y* to form Y. If y~ < 
~l’ 

eli m inate 
~n+1 

(by the way 
~l 

was chosen,

it must be the case that sign(a(y1
)) = -sign(a(y + 1)). Similarly , if

> 
~~fl~~~~

’ eliminate

If the new reference set Y is the same as the reference set from

the last iteration, R, then it is necessarily tru e that h A l = h f  - ~hl
and from the Characterization theorem, p must be the best approximation

to f from S, and we terminate the algorithm . If Y � R, then we

iterate again, substituting our new reference set Y for the old refer-

ence set R. The exchange procedure outlined above insures that as long

as the A determined by the initial reference set is non-zero then at

each successive iteration, the magnitude of the present A is strictly

greater than the magnitude of the A in the preceding iteration (see (3]).

It can be shown [6, p. 108] that the above algorithm does converge

(uniformly) to the best approximation to f from S. In fact, under

stronger hypotheses, the convergence is quadratic (6, p. 111].

We may extend these results by forcing the approximation functions

to satisfy certain side conditions. We now consider two such exten-

j sions. First, we consider imposing interpolatory constraints on the

approximating functions and their derivatives, then we shall consider

restricting the range of the approximating functions. In both cases,

if we make strong enough assumptions on the structure of the subspace S,

--  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



5

the questions of existence, uniqueness and continuous dependence on

the data can be affirmatively answered (see [5] for interpolatory

constraints; see (8] for restricted range).  Moreover , in both cases,

the Remes algorithm can be extended to effectively compute best

approximations from these new approximation classes.

In order to consider the interpolatory constraint problem we must

first define an extended Haar system. We follow the notation in [5].

Let {u
1
(t )}

~~1 
be a family of functions in C[a, bi (with each suffi-.

ciently differentiable so that what follows is well def ined) and

{t1)~..1C (a, b] be such that a < t1 
< t2 < ... < ~~ < b. Define

~1
(t1
) 

~~~~~ 
...

u*(
1’” ,~~~ ) :

~~(t1
) ~~(t2

) ...

where for fixed j

- Ju~
(t
~

) if t~_1 <

- ~ (t
1

) if t1_11 
= t~ _~~1 

= ... = t
i

1 < i < n. The functions fui(t)}? i will be called an extended

Chebyshev system of order v on [a, b) provided uj€ C” 1 [a, bi,

i = 1, . . . ,  n, and

u*(~ ’ 
n 

~tl, tn

for all choices -t1 
c t2 c ... c t~~, t~ £ [a, b], where equality occurs

in groups of at most v consecutive 4 values. An n-dimensional subspace

--

~~~~~~~~~~~~~~~~~~~~~~ -- -~~~ -
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M of C[a , b] is said to be an extended Haar subspace of order v ,

V < n, provided that there exists a basis for M which is an extended

Chebyshev system of order v on [a, b].

We may state the interpolatory constraint problem as follows.

Let M be an n-dimensional extended Haar subspace of order v (on

[a, b]). Let {x1
}~~1 

C X C [a , b) satisfy x1 < x2 
< ... < X

J~~ and

let {m
1
}~_1 be a set of positive integers such that max (m.) - 11~ l<i<k

k
< v , and ~ m1 m < n . We assume X contains at least n - m t k + 1.

points. L:t {ai~
)
~~~

i
~~ü 

be a set of m real numbers and define

S = (p £ M : ~~~~~~~~~ = a
1~~ 1 < i < k and 0 

~ 
c m. - 1).

The interpolating constraint problerr then is to find best approximations

to functions in the class

~(x ) = {f £ C(x) f (x 1) a
10
, 1 < i < k }

from the class S.

The Remes algorithm may be extended in the following manner to

compute interpolatory approximations. Let fE ~(x ) , {x
1
}~~1

,

and {a
11
}~’~~~~0 be as above. Let R = {t

1
, . . .,  t

1
}C  X

be such that t1 < t2 
< ... < t~~1, and each x~ is repeat ed in R m1

k
times. Moreover, if t4 € R ‘~~ U x~ , then t4_1 < t .~ 

< t Let
-J 1=1 -‘ J I

be such that {t
~~

} r1= R ‘~~ U x 1. It can be shown (see

(5]) that there exist a unique p E~ S and a real number A satisfying

( 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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)
f(t. ) — p(t. ) = (—1) ~~~~~ t = 1, 2, . .. ,  n—m+ l ,

J _t
and

a~~, j 0, 1, . . . , Tn . — 1, i=l ,. .. ,k.

We assume that R is initially chosen s~ that h A l > 0.

Next we perform an exchange on the reference set R to form a new

reference set Y C X with the properties that each x1 is repeated in Y

m1 times, that there is a y*C Y such that hf(y
~
) - p(y*)l = hff-p~i

k
and if (

~ . 
~L l  = Y ‘~~ U x1 

then
— j l

~1sign{f(t. ) - p(t1 
)} (—ii~ sign{f(t. ) — p(t. ) } ,  L =

- L 1
1 

1
1

where q = ~ - 1
~
. After the exchange, if R � Y we iterate again using

the reference set Y in place of R. If R Y then the present p is the

best approximation to f from S, and the algorithm is terminated . For a

description of the exchange and a proof that this algorithm converges

uniformly, see (5:1.

We now consider uniform restricted range approximations. For

a given f € C(X ) we assume that we have two extended real valued

functions u(x) and L(x) defined on X which satisfy the following

requirements:

(i) t(x ) may assume the value -
~~ but never +~~ .

(ii) u(x) may assume the value +~ but never -~~ .

(iii ) A = i’(-~
) and B = u~~(”) are open sets in X.

(iv) L(x ) is continuous on X ~ A.

(v) u(x) is continuous on X ‘~
, L

(vi ) L(x) < f (x )  < u (x )  for all X E  X.

(vii) £ (x) < u(x) for all x € X.
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Let S be an n-dimensional Haar subspace of C(X). Let

K {p ~ S : L ( x )  < p ( x )  < u ( x )  for every x C. x}. We say that p* is a

best restricted range approximation to f if p* 6 K and hh f_ p *)I inf hi i-phI .
ç~ KTaylor [8) has proved that under the above hypotheses on f , 9., u and S,

and if K � $,  then there exists a unique best restricted range approxi-

mation to f. As long as there is more than a single element in K , then

we have a characterization of the best restricted range approximation to

• f as given in the following theorem. Before starting Taylor ’ s charac-

terization theorem, we define for each p € K the following subsets of X.

X~1 
{x € X : f ( x )  — p (x )  ll~ - p hI }

X
1 

= {x€ X : f(x) - p(x ) - ~f f  - p hi )

X~2 
= {x C X : p(x)

X_2 = {x € X : p (x )  = u(x))

= X~1U x_ 1U x~2 U x_ 2 .

Restricted Range Characterization Theorem [8]. p*E K C. S is a best

restricted range approximation to f if and only if there exist n + 1

distinct points, x0, . . . ,  x~ with x0 < x1 < ... < x1~ in 
~~~ 

satisfy ing

= (_l)i~~a(x1), where o(x) = -l if x€ x 1U X 2 and o(x )  +1 if

x E  X
+:LU X~2~

This characterization is the basis for th~ following multiple

exchange algorithm due to Gimlin , Cavin and Budge [141 which is the

analog of the multiple exchange Remes algorithm previously described. We

assume f € C(X) is fixed and that u, £ , and K have been chosen as

described above . We also assume that we have an arbitrary reference set

R (x1, . . .,  x
~+1

} C X with x1 < x2 < ... < xn+l on which no function

in K interpolates f. Set (_ 1)I
~~ , ~~ f(x1) , i 1, . . .,  n s 1.
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We begin the first iteration by finding p € S and a real number

such that p(-x.) + a .A  = 
~~
.. We next execute an exchange algorithm which

returns a new reference set Y C X, and (possibly ) new values for a
~ 

and

f~ . If our current reference set R ~ Y, we iterate again substituting Y

• for R. If R Y, then our present p is in K and satisfies the character-

ization theorem so that p is the best restricted range approximation to

f.

We now describe the exchange algorithm. We define the function

• sign* as follows.

sign(f(x)-p(x) if 9 . (x )  < f ( x )  < u(x) or f(x) � p (x))

sign*(f(x)’_p(x)) +1 if f(x) 9.(x) p(x)

—l if f(x) u(x) = p ( x )

It can be shown (see [n]) that at each iteration sign*(f(x.) - p(x1))
_sign*(f(x

1~1
) p(x.~ 1

) ) ,  i = 1, . . .,  n. Set z
~
=inf{x C [x1,x.~ 1

]C~X:

sign*(f(x)_p(x)).sign*(f(x1)_p(x 9.
)).cO), ~ l,2, . . ., n. Set z0=m~n{x € x},

max (x €. x}. Def ine E1, M1, m
~ 
as follows.

= max {s 1~ ( f ( x )  — p(x)) - h A I }
x
~

(z1_ 1 ,zi)nx

= max (S9. (u(x) — p(x))}
xi[z.

11z1]
~
X

mj max {S
1

(9.(x) — p (x)~ }
X E[ Z 1 1 1Z~JflX

where Sj sign*(f(x1)_p (x~)). Let ‘~1
max {E i,M~

,m1
}, in case of equality,

choose to be the first largest member of the triple . We define a new trial

reference set ~~~~~~~~ ..., by taking to be a point [z~~1
,z1]flX at which

occurs.

4 — — 
____________________________________ —
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Define y maxtE , M , ml where

E = max(lf(x) — p (x)i — l x i )
x~X

M max{p(x) - u(x)},
x€X

m = max{L(x) - p(x)}.
xE.X

In case of equality , choose y to be the first largest member of this

triple. If for some k, 1 < k ~- ~~ y ,  then set Y = Y. Otherwise , let

y* be a point at which y occurs, insert y* into Y and delete a YkE Y

exactly a was done in the Remes algorithm , preserving sign~ alternation .

n-f-]. n-I-lWe now determine our new sets (o.).
~~ 

and (f.}.
1
. If y1 € Y is a point

at which E or occurs , set a~ = sign ( f (y 1) - p (y1)), and set f~~f(y1).

If y~ is a point at which M or M1 occurs, set a. = 0, and set

If is a point at which m or rn~ occurs, set = 0, and set

This completes the exchange algorithm.

See Gimlin [4] for a proof that this algorithm does converge to the

best restricted range approximation to f.

As can be done with best uniform approximations , best restricted

range approximations can be computed subject to interpoiatory constraints.

The precise formulation of the problem is completely analogous to that

of best uniform approximations with interpolatory constraints. A Remes-

like algorithm for computing restricted range approximations subject to

interpolatory constraints is available and is analogous to the Remes-

• like algorithm given above for computing best uniform approximations with

interpolatory constraints. For a complete discussion of this problem see

(2].

— 
~~~~~~~~~~~~~~~ 
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CHAPTER II

Two Adaptive Piecewise Polynomial Curve Fitting Algorithms

In this section we present our algorithms for adaptively finding

smooth piecewise polynomial uniform approximations. First, we define

what we mean by a piecewise polynomial uniform approximation. Suppose

the function to be approximated, f, is defined on X a compact set of real

numbers, and [a, b] is the smallest interval containing X . A function p

is a piecewise polynomial approximation to f of degree n if there are m

closed intervals , [a , Xi], [x1, x2], ...,  [x
~~1

, b:l=11,12
,..., I~ , such

that the restriction of p to I~ is in = (p p is a polynomial of

degree less than or equal to n) for each j. If p restricted to I~ is the

best uniform approximation to f on X (1 I~ from fl~~ for each j, then p is

said to be the best piecewise polynomial uniform approximation to f of

degree n (with respect to the partition I~ , I2~ “~~~~
‘ ‘m of [a, b] (‘, X ) .

See [1] and [7] for a theoretical study of this problem where Ii,... “m
are chosen so that E1 max {If(x) - p(x)I} is the same for all j-, x~I rlX
(thereby giving the partiti~n containing the minimal number of intervals

needed to achieve this error).

However , in many applications of approximation theory, it is also

desired to find a smooth approximation. If one adds this constraint to

the above problem , then a best smooth piecewise polynomial uniform

approximation may not exist having the same error on each subinterval.

Even if such an approximation does exist , the number of subintervals in

the partition can be unreasonably large . Thus , rather than finding a - -

1.]. 

• 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_______________________ - ——- — .-. ~~—— •-—~~~~—•-•-•••——•.- ———  —
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best approximation in the above sense, it is reasonable to first stipu-

late an error bound for h f  - 

~hI and a smoothness constraint on the

piecewise polynomial. Given these constraints , one then should seek a

partition I].~ . I~ of [a , b] such that m is in some sense minimal or

small and the piecewise polynomial uniform approximation, p ,  to f with

respect to this partition satisfies both the error tolerance and smooth-

ness demands .

This latter approach is what we will follow . Typically , our

smoothness constraint will be that p E. C~
’(a , b i  where v = 0 , 1 or 2.

Our adaptive curve fitting algorithms will find smooth piecewise poly-

nomial uniform approximations satisfying a prescribed error tolerance and
G

smoothness requirements by adaptively choosing subintervals. This

partition will be chosen in such a way that the error of the best uniform

(or restricted range approximation) to f on the intersection of each sub-

interval with X from 11n subject to interpolatory constraints guaranteeing

the desired smoothness is less than the prescribed error tolerance . At

the same time, effort is made to keep the number of subintervals as small

as possible. In what follows, the points {x
~
}
~_0 

will be called knots,
• where x0 = a, xm = b, and I~ = [x 11 , xi

].

Altorithm 1

We assume that f E C(X). We use the following notation : n denotes

the degree of the approximating polynomials. 514TH denotes the number of

continuous derivatives desired at the knots (SMTH < n ) ;  TO!.. denotes the

approximation tolerance we wish our piecewise polynomials to satisfy ; and

LNGTH denotes an approximate minimum length we will allow for any
I

-:4

I 

~~~~~~~ ~~ Th~~”~’ - 
—
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subinterval. We assume these values are all given and fixed. We begin

by choosing ‘
~~~~ ~ 

X to be the largest point in X which satisfies

• (1) x
1 - a 1~~~

GT1
~

( 2) If p1 is the best uniform approximation to f from ll~ on

[a, 
~l ~ X , then sup lf ( x )  - p1(x)I < TOL.

x€[a,3t1]riX

If = b, then since p1 is a p iecewise polynomial meeting our require -

merits, the algorithm is successfully terminated. If no such x1 exists ,

then the algorithm fails and is terminated with an appropriate error

• message. Otherwise, we choose x1 to be the largest extreme point of

f (x )  - p1
(x) in (a, ~~~ ) fl X (which is easily available to us from the

Remes algorithm).

We continue by finding successive intervals [x
1, x2), tx2, x3], . . .,

[x
1

, b], and polynomial approximations p 2, p 3.  .. 
~m ~ 

to f so

that p~~~(x1) = p
~~ j~

(xi ) for i = 1, 2, . ..,  m — 1, j = 0, 1, . . . ,  SMTH ,

and so that sup l~
(
~

) - pi(x)I < TOL. This is accomplished as
x€ (x. 1

,x~]flX

follows.

Suppose we have determined the subintervals [a , x1], [x 1, x2 ],

[Xi 2 ,  x1 l ], and the approximations p1, p2 . ...
~~ ~i.l• 

Assume further

that b - xi l  > LNGTH. We now determine an x~ and a p~ meeting the

above requirements. We begin by choosing 
~~ ~ 

X to be the largest point

in X which satisfies

(1) 
~~j  

- Xj .1 ~~ LINGTH ,

• (2) If is the best approximation to f from fl~ on [x
~~1, ~~j ] i~ 

X

subject to the constraint that ~~
1
~ (~ 9 . 1) =

A 
_____________ 

_________________________________________________________

__________ _________________________________________—



4 j = 0, 1, . . .,  SMTH , then sup ,~~ 
if(x) - p

1
(x~~ < TOL.

xE(x
1 1 1x1)(VC

If = b, we set x~ = = b and the algorithm is successfully termi-

nated. If no such 
~~ 

exists, the algorithm fails and is terminated with

an appropriate error message. Otherwise, we choose x~ to be the largest

extreme point of f (x )  - p~(x) in (x. 1, ~~j
) fl X .

Finally,  we consider the special case where b - x~~1 < LNGTH. In

this case we change x. to some x . £ X, where x. < x. < x .  < b.i—l i— i i—2 i—l i— i

So that b - ~~~~~~~ > LNGTH. Specifically , we choose 
~i l  to be a point in

X closest to (b - Xi 2 )/2 which satisfies

(1) b - > LNGTH,

(2) If is the best approximation to f from 
~~ 

on ~~~~~ bi (‘~ X

subject to the constraint that p~~~(x. 1
) = ~~~~~~~~~~~~~~~~~ for

j = 0, 1, . . .,  SMTH , then sup If ( x )  - p1(x)I < TOL.
x
~

(x i 1,b)flx

Again , if we can find such an x~~1, then the algorithm is successfully

terminated. If not, the algorithm fails and is terminated with an

appropriate error message.

Algorithm 2

We assume that f , 9., and u E C (X )  and satisfy the hypotheses

necessary for restricted range approximation. Let n, 514TH and LN GTH be

as in Algorithm 1. If TOL is the tolerance we wish the approximation to

• satisfy, then we make the additional assumption that I and u have been

chosen so that if p is any function satisfying 1(x) c p(x) < u(x) for all

x E X, then h f - PH c TOL. We begin by choosing ~1E X to be the

I

4 -
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largest point in X satisfying

(1) ~1 -a>LNGTH ,

(2) There is a best restricted range approximation , p
1

(x ) ,  to f

from fl~ on [a, ~c1] ~ X.

If b , then the algorithm is successfully terminated . If no such x1
exists, the algorithm fails and is terminated with an appropriate error

message . Otherwise, we choose x
1 to be the largest extreme point of

f(x) - p1
(x ) in (a, x1) fl X.

Proceeding analogously to Algorithm 1, in general, if b -

> LNGTH, we choose £ X to be the largest point in X so that

(1) ~~~. 
- x . > LNGTH ,

1 i—l —

(2 ) There is a best restricted range approxima tion , p
~
(x ) , to f

from 
~~ 

on [x
~~1

, 
~~~~~~

] fl X satisfying the constraints

= p
~
1
~~

(x
i 1

) , j = 0, 1, . . .,  SMTH.

If b the algorithm is successfully terminated . If no such

exists, the~ algorithm fails and is terminated with an appropriate error

message. Otherwise , x~ is chosen to be the largest extreme point in

(x i1 , ~~) fl X.

If b - x1 1  < LNGTH, we choose £ X to be a point closest to

(b - x .
2

)/2 which satisfies

(1) b - > LNGTH

• (2 )  There is a best restricted range approximation , pi (x ) ,  to f
(1)from Ii on [~~~~~~~~~

1
~~~b) fl X satisfying the constraints Pj 

~~~~~
= 

~i—1~
”i—l~’ 

~ 0, 1, ..., SMTH.

~~~

•

. .

-: 
- 
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If we can find an x .1 , the algorithm is successfully terminated; ~f

not , the algorithm fails and an appropriate error message is printed .

Remarks

• We first note that in algorithm 1 it is in general not necessary

to compute the best approximation on a particular subinterval in order

to conclude that the subinterval is too long. Indeed, at each iteration

of the Remes algorithm we obtain a lower bound for the error of the

best approximation on this particular subinterval , namely l x i .

Consequently, if during some iteration of the Rernes algorithm l x i  TOL ,

we may conclude that the present subinterval is too large and terminate

the Remes algorithm.

In our implementation of these algorithms, the are chosen as

follows. At each step of this iterative procedure we will let � be the
current largest point in X such that requirements (1) and (2) of the

appropriate algorithm are satisfied on [x.
1
, ~

] fl X , and we will let

be the current smallest point in X such that ~ ~ and requirement ( 2 )

of the appropriate algorithm fails to be satisfied . We initialize this

~~~~ process by computing (or attempting to compute) the appropriate best

approximation on [x
i 1 , 

b] A X. If this approximation satisfies

requirement (2), then we set b and we are done. If the approxi-

mation fails to satisfy (2), we set b. Next, let t=min (x~~ X

x - Xi l  > LNGTH}. If the approximation on [x1_ 1 , t] A X fails to

satisfy (2) then the algorithm cannot meet the desired accuracy and

fails. Otherwise, we set = t.

• 
- 

In general. we proceed as follows. We let t = inf{x e X : (~ -
‘
~)/2

< x 
~

}. If this set is empty, we set t~sup(xC X:a < x < (~ -~
)/2}.

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ - ~~~~

• -
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If t a then this procedure has converged and we set = t =
Otherwise, we compute (or attempt to compute) the appropriate approxi-

mation on [x 1_ 1, t) A X. If this approximation satisfies (2) then we

set t. If this approximation fails to satisfy (2) then we set

14 ‘~~ 14
b = t. We continue this process until b - a is less than some prescribed

tolerance, at which point we accept as a good approximation to and

terminate this procedure. We compute the x~ in a manner analogous to

the above.

In an attempt to accelerate the convergence of the above scheme in

curve fi t t ing algorithm 1, we have tried to take advantage of the fact

that corresponding to each we know the error of approximation on

(x i 1, ~
‘] A X, call it SMLERR , and corresponding to each we know a

lower bound for the error of approximation on [x . 1, ~
] fl X , call it

BIGERR . We change the above scheme by first setting ~~ (SIGERR - TOL)

/ (BIGERR - SMLIERR) and then setting t = in f {x eX  : a~+(l-c*)~ <x<~ } or ,

if this set is empty , we set t = sup {x 
~~. 

X : a < x <  + (1 - in

the general iteration described above. Hence, if SMLERR is very close

to TOL, t will be chosen close to ~~~. Our numerical experience has shown

that this procedure only works well when approximating uniformly smooth

functions and that this algorithm c lnnot be significantly improved by

allowing the Remes algorithm to run to completion in order to obtain

the true error of approx imation for BIGERR .

If f ( x )  is differentiable on some interval and x0 is an interior

relat ive extreme point of f ( x )  - p (x )  In this interval, then f’(x0)

= p’(x0). Hence, by “backing off” from to x1 we hope to force the

first derivative of the approximating polynomial and the first 

~~~~ •~~i~
_-
~

- _ — ----- - -
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derivative of the function being approximated to agree closely at th !

knots, ther~eby dampening oscillatory effects otherwise prevalent in thli~

type of approximation when we require the approximation to he at least

continuously differentiable. Our numerical experience has shown that

this procedure is crucial in order to obtain reasonable approximations.

If we only want our approximations to be continuous at the knots, then

this procedure accomplishes nothing and should be overridden.

In our implementation of these algorithms, we have always assumed

that X is a finite set of points. Because the Remes algorithm can only

find approximations on sets of at least n + l-SMTH points , one of the

uses of the parameter LNGTH is to insure that every set on which we

approximate contains at least n 1- l-SMT H points .

If we set 1(x) f (x )  - TOL and u (x )  = f (x )  + 101. in algorithm 2 ,

the approximations obtained from algorithm 2 are the same as those

obtained from algorithm 1. However, for a broad class of approximation

problems, the additional computational complexity of algorithm 2

justifies the use of the simpler algorithm 1. We will discuss this

aspect in greater detail in the next section. Algorithm 2 is particu-

larly suited to problems where the desired tolerance varies over the

length of the interval. In the next section we will describe a stritegy

which essentially allows us to weight data points which contain signi-

ficant levels of noise by an appropriate choice of 1(x) and u(x).

‘ I

-
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CHAPTER III

Numerical Results

Algorithms 1 and 2 have been implemented as FORTRA N programs and

have been tested on Colorado State University ’s CDC CYBER 172. Care

has been taken to make the programs reasonably efficient and consistent

with each other so that CPU time comparisons should be meaningful . As

examples , the functions e~~~ on [-1, 1), Isin(x)h on [-w , vi and p’~~~

on [0, 2) were approximated on 200 equally spaced points with

TOL = .01, SMT H 2 , and N = 6. When using algorithm 2 we chose

u(x)  = f ( x)  + TO!. and 1(x) f (x )  - TOL. Each of these examples is

most difficult to approximate by polynomials near x = 0. Consequently,

the algorithms ’ ability to automatically decrease the length of the

subintervals near x 0 and then to recover by lengthening them for

x > 0 is tested. As noted above, the apprbxima t ions computed by the

two algorithmo should ( and do) agree up to machine accuracy . Below is

a table listing knot locations (subinterval endpoints ) and the CPU t ime

in seconds used by each algorithm to compute the piecewi se polynomial

approximation.

19
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_______________  
e1’

~ — 
Isin(x)L 

________

~~~jAlgorithm 1 .979 1.095 .876

~
$‘ [Algo~’fthm 2 1.518 1.539 1.367

—1.0 
— 

-3.114 0.0
- • 314 7 — .268 .O8OL4
- .0653 .047 14 .231

Knot 
- 
.01452 .205 .352

Locations .196 .1458 .8114
• 437 .868 2 .0
1.0 1.53

___________  
3.14

We have found that in order for these algorithms to be stable , it

is crucial that when computing smooth approximations (SMTH > 0), the

derivative of the approximating polynomial agree closely with the slope

(or approximate derivative) of the function being approximated at the

right endpoint of every subinterval except the last. Wher. approximating

on a dense enough subset of an interval, the strategy of choosing x~ to

be the last interior extreme point of f - p given in the description of

the algorithms seem s to be suff icient .  However , for more widely spaced

points , the true last interior extreme point of f - p, x*, generally is

not in X and often , the closest point in X to x~ , which is found by the

Remes algorithm, is not a point at which p ’ agrees very closely with the
14

slope of f. Our numerical experience has shown that by setting f’(x)

to be the derivative of the centered quadratic interpolation of f at x

and choosing xi to be the largest extreme point returned by Remes such

that (f’(x) - p’(x)} is a minimum we obtain a considerably more stable

algorithm.

For some applications it might be preferable to be able to choose

ahead of t ime a particular knot location and to specify interpolatory

constraints at these knots. For example, when approximating hsin(x I
it might be advantageous to force a knot to be located at x 0 and to
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require p ( O )  = 0, p ’(O) -l as x approaches 0 from the left , and

p’(O) = -l as x approaches 0 from the right. The modifications to the

algorithms as given necessary to accomplish this would not be extensive

or difficult.

Because uniform approximations weight each data point equally , they

are particularly suited for approximating precise mathematical functions

or for approximating data with noise levels that are very small relative

to the desired accuracy. However, when these algorithms are used to

approximate functions containing considerable levels of noise, the

approximations tend to follow the noise patterns more than is desirable

so that near abrupt changes in the data, the approximations tend to

begin to oscillate and generally it requires several suhiritervals to

dampen these oscillations.

For example, we were given some experiemtnal data involving the

release of bitumen from oil shale heated to a constant temperature as a

function of time. Because relatively jew data points were available ,

we filled in the gaps between the data points by linear interpolation so

that we approximated on 200 equally spaced points. Figure 1 is a plot

of the data being approximated , the constraining curves u(x) and ~(x ) ,

and the approximation generated by algorithm 2 where N = 6, SMTH = 2,

TOL = 2.5, u(x) = f (x )  + TO!., and 1(x) = f(x) - TOL. Notice that as

oscillations appear in the data between times of 22 and 34 minutes,

greatly exaggerated oscillations appear in the approximation.

_______________ - ~~~~~~~~~~~~~~ • —
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RESTRICTED RANGE 75 GAL/TON TEMP=425 BITUMEN
N 6 , NSMTH 2, TOL=2.500. Knots are indicated by ~~ .
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Figure 1

In order to dampen this effec t, we have found that by appropriately

choosing u (x )  and 1(x) we can improve upon this approximation .

Essentially , we choose u(x) and 1(x) such that for each x E. X,

max{u (x) - f(x), f(x) - 1(x)) = TO!., and u ( x )  and 1(x )  are as smooth

as is reasonably possible. Thus, the data points are scattered inside

a band of varying width , but neither boundary is further than TOL from

a data point. When one data point differs sharrly from those on either

side of it, we appropriately choose either u(x) or 1(x) to be close to

4

4--
k
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this data point. The effect of this choice of u and I is to tend to

force the approximation toward the more “believable” side of the data

which results in fewer u .cillatory problems. Figure 2 is a plot of the

same example shown in Figure 1, but with u(x) and 1(x) chosen as above .

RESTRICTED RANGE 75 CAL/TON TEMP=425 BITUMEN
N 6 , IISMTH=2, TOL~2.50O. Knots are indicated by H.

.11114W-

.1111+11

.W114W~~ 
-

..s~~ e •

.110411 ’

I
.11114W

—.1*4W - I • 1 • 1....L,.~~.L _  4, . __L ... . _~ . L .  - - I I I I

I I I I I I
Figure 2

If a technician collecting data knows the general trend his data

should follow, he can set u(x) and 1( x ) accordingly, forcing the

approximation to lie within theoretical bounds instead of just

4
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~-r~’scribing an error tolerance. Or , if he knows that part of his data

is highly accurate relative to the rest, he can easily vary the toler-

~ince he is willing to accept accordingly . If he finds that the approxi-

mation generated using one set of restraining curves allows the approxi-

mation to have undesirable characteristics , generally he can alter

these characteristics by appropriately changing u (x) and 1(x).

There is no requirement inherent in these algorithms for the data

points to be equally spaced. By adding more points in regions where

there are quick variations in the function being approximated , smoother

a~~roximations result due to the fact that the algorithm will find more

optimal right end points as they “back off” from the

Because L2 approximations minimize the effects of normally distri-

buted random noise, we are experimenting with altering algorithm 1 by

computing best L2 approximations in each subinterval instead of best

uniform approximations, the theory for best L
2 restricted range

approximations is very difficult and has not been developed ; therefore,

we cannot construct the analog to algorithm 2 using best L2 approxima-

tions . We will report on this work in a future paper .

Recently , John Rice has written several papers in which he dcscribe~

an adaptive piecewise polynomial algorithm which uses local Hermite

interpolation instead of uniform approximation on each subinterval to

obtain each polynomial piece (see for example [9)). His algorithm

requires that the first SMTH derivatives or approximate derivatives of f

be available in order to compute approximations which have SMTH contin-

uous derivatives. Rice’s adapt ive strategy also differs from ours ; he

uses a bisection strategy which can be described as follows. First, I
- -~~~

--—-
~~~~~~

- - - - -
; ~~~~

—
~~~

—-
~~~ ~~~~~~~~~~~~~~ ~~~~ - -- . -~~~•
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compute the Hermite interpolating polynomial to f on [a, bJ . That is,

compute the polynomial which interpolates f and its first SMTH deri-

vatives at both endpoints, as well as interpolating f at k evenly

distributed points in (a, b), where k = DEGREE - 2~SMTH - 1, and DEGREE

is the degree of the approximating polynomial . Next , measure the error

of approximation using any preselected iF norm (p > 1). If the error

is less than TOL, the algorithm terminates, otherwise bisect [a, b]

into two subintervals and check to see if the Hermite interpolating

polynomial on [a, (a + b)/2] differs from f in norm by no more than TOL.

Meanwhile , place the subinterval [(a + b)/2, bi in a “stack” to be

processed later. Continue bisecting subintervals , placing the right

half of the interval on the top of the stack to be processed later and

check the left half to see if the error of approximation by the Hermite

interpolating polynomial is less than TO!.. When a subinterval and its

associated approximation are found which meet the desired tolerance,

we accept this approximation as a “piece” of the piecewise polynomial

approximation and continue the algorithm by removing the subinterval

which is currently at the top of the stack and repeating the above on

it unless the stack is empty, at which point terminate the algorithm .

Rice ’s routine requires the value of the function and its deriva-

tives at very many points in [a, b], even though it may not actually

access these values. His algorithm is particularly suited , then , for

approximating precise mathematical functions for which this data is

readily available. Our algorithms seem more suitable for data reduction

in the sense that instead of storing a large number of data points ,

the user could instead store the coefficients of several polynomials
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resulting in a savings of storage space. Our approximations seem

preferable for this purpose since our algorithms do not require any

information about derivatives, and no special configuration of the data

is needed for our adaptive strategy to work .

By using interpolatory constraints on both endpoints of each

subinterval , and interpolating the values of the derivative of f at

these points, we could modify our algorithms to use a bisection adaptive

strategy . However, in order to take greatest advantage of our use of

the best uniform approximation operator as opposed to the Hermite

interpo”ation operator, we felt that it was preferable to use the

ma j ority of our degrees of freedom for inside subintervals instead of

using them up on interpolation requirements at the endpoints . Essen-

tially, in our algorithms we traded a somewhat faster run time (since

the uniform approximation operator is computationally very slow relative

to the Hermite interpolation operator) for fewer knots, the freedom from

needing to know derivative information , and in algorithm 2, greater

control of the characteristics of the approximations.

II
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